Name: \qquad Date: \qquad

10-1B \& 10-1C Volume Notes: Prisms, and Cylinders

Volume - the space a three-dimensional figure occupies * units cubed $\left(\right.$ in $^{3}, \mathrm{ft}^{3}, y d{ }^{3}$, etc)

For Prisms and Cylinders

(2 parallel bases, w/rectangles for sides) | $V=B h$ | $h: \begin{array}{l}\text { height of } \\ \text { Prism } \\ \text { cylinder }\end{array}$ |
| :--- | ---: |
| $B:$ area of base shape | | \(\begin{aligned} \& distance

\& between two

\& bases\end{aligned}\)

Ex. 1: Find the volume of each prism or cylinder. Round to the nearest tenth if necessary.

Rectangular Prism
A.

$=3(8.5)(6)$
$V=153 \mathrm{~cm}^{3}$

Triangular Prism

$$
V=333 \mathrm{~cm}^{3}
$$

Cylinder

$$
\begin{aligned}
V & =B h \\
\text { area of } & =\left(\pi r^{2}\right) h \\
\text { circle } & =\pi(3)^{2}(10.5) \\
& =\pi(9)(10.5) \\
& =94.5(3.14) \\
V & =296.7 \mathrm{ft}^{3}
\end{aligned}
$$

Ex. 2: The base of a rectangular box has an area of 18 square feet and a volume of 360 cubic feet.
$B=18 \mathrm{ft}^{2} \quad V=360 \mathrm{ft}^{3} \quad V=B h$
A. Write an equation that can be used to find the height of the box.

$$
360=18 \mathrm{~h}
$$

B. Find the height of the box.

$$
\begin{aligned}
& \frac{360}{18}=\frac{18 h}{18} \\
& h=20 \mathrm{ft}
\end{aligned}
$$

Ex. 3: What is the volume of a cylindrical canister that has a radius of 2 inches and a height of 5 inches? Round to the nearest tenth.

$$
\begin{aligned}
V & =B h \\
& =\pi(2)^{2}(5) \\
& =(3.14)(4)(5) \\
& =(3.14)(20) \\
V & =62.8 \mathrm{in}^{3}
\end{aligned}
$$

5 in

