\qquad Date: \qquad

10-2E Surface Area of Pyramids *units squared

Surface Area - Sum of all the areas of the surfaces (faces) of a 3-D figure.

For Rectangular Pyramids

$S A=B+\frac{1}{2} P l_{s}$	$B=$ area of base $P=$ perimeter of base $l_{s}=$ slant height

For Triangular Pyramids

$$
S A=B+\frac{1}{2} P l_{s}
$$

* formulas only work with an equilateral base
height on the side of figure (height of
A. apex \longrightarrow Rectangular Pyramid

B. Triangular Pyramid

$S A=A_{\square}+2 A_{\Delta_{2}}+2 A_{\Delta_{3}}$

$$
\begin{aligned}
& S A=B+2 A_{\Delta_{2}}+A_{\Delta_{3}} \\
& S A=\frac{b h}{2}+2\left(\frac{b h}{2}\right)+\frac{b h}{2} \\
& S A=\frac{13(13)}{2}+13(18)+\frac{98(18.4)}{21} \\
& S A=84.5+234+165.6 \\
& S A=484.1 \mathrm{~cm}^{2}
\end{aligned}
$$

Ex. 2: A game piece for a board game is shaped like a square pyramid. It has aslant height of 15 millimeters and the bases have edges 11 millimeters long. What is the surface area of the game piece?

Square Pyramid

$S A=B+\frac{1}{2} P l_{s}$
$S A=l w+\frac{1}{2}(s \cdot 4) l_{s}$
$S A=(11)(11)+\frac{1}{2}(11)(4)(15)$
$S A=121+\frac{1}{2}(44)(15)$
$S A=121+330$
$S A=451 \mathrm{~mm}^{2}$

KEY TIPS:

1) Circle (height of figure)
2) Shade (bases)
3) Name (figure using the shape of the base)
4) Write basic formula for 3-D figure
5) Write specific formula (according to base)
6) Substitute values
7) Calculate
8) Check units/rounding
