\qquad Date: \qquad

5-2B Scale Drawings

Scale Drawing or Model - a two dimensional drawing used to represent an object that is too large or too small to be drawn or built at actual size.

Note: measurements on a drawing or model are proportional to the measurements of the actual objects

Scale: $\frac{\text { drawing/model size }}{\text { actual size }}$

Scale - ratio with units that determines how the drawing or model is related to the actual object.

* drawing or model is always on top

Scale Factor - scale without units. (in simplest form)

* To convert scale to scale factor, we must first have the same units on both top and bottom of ratio \rightarrow convert to smaller unit

Ex. 1: Find the scale.
A. A model car is 4 in long. The actual car is 12 ft long. What is the scale of the model?

$$
\text { Scale }=\frac{\text { model }}{\text { actual }}=\frac{4 \mathrm{in}}{12 \mathrm{ft}}=\frac{1 \text { in }}{3 \mathrm{ft}}
$$

Ex. 2: Find the scale factor.
A. 4 in $=10 \mathrm{ft} \xrightarrow{\longrightarrow}$ who units

$$
\begin{aligned}
& \text { Scale } \rightarrow \frac{4 \mathrm{in}}{10 \mathrm{ft}}=\frac{4 \mathrm{in}}{120 \mathrm{in}}=\frac{1}{30} \\
& 1 \mathrm{ft}=12 \mathrm{in} \\
& 10 \mathrm{ft}=120 \mathrm{in}
\end{aligned}
$$

B. $6 \mathrm{~cm}=1.5 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Scale } \rightarrow \frac{6 \mathrm{~cm}}{1.5 \mathrm{~mm}}=\frac{60 \mathrm{~mm}}{1.5 \mathrm{~mm}}=\frac{40}{1} \\
& 1 \mathrm{~cm}=10 \mathrm{~mm} \\
& 6 \mathrm{~cm}=60 \mathrm{~mm}
\end{aligned}
$$

B. Given a scale $1 \mathrm{in}=20 \mathrm{ft}$, find the dimensions of the room based on the drawing below. ζ length $\$$ width

[^0]
[^0]: Dimensions:
 12.5 ft by 15 ft

