5-2B Scale Drawings

<u>Scale Drawing or Model</u> – a two dimensional drawing used to represent an object that is too large or too small to be drawn or built at actual size.

Note: measurements on a drawing or model are proportional to the measurements of the actual objects

Scale: <u>drawing/model size</u> actual size

Scale – ratio with units that determines how the drawing or model is related to the actual object.

* drawing or model is always on top

Scale Factor - scale without units. (in simplest form)

* To convert scale to scale factor, we must first have the same units on both top and bottom of ratio -> convert to smaller unit

Ex. 1: Find the scale.

A. A model car is 4in long. The actual car is 12ft long. What is the scale of the model?

* Always reduce numerator to equal "1"

Ex. 3: Use proportions to find unknown lengths.

A. A map has a scale of 1in = 8mi. Two towns are $3\frac{1}{4}in$ apart on the map. What is the actual distance between the two towns?

map actual
$$\frac{1 \text{ in }}{8 \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ mi }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ in }}{1 \times \text{ mi } \overline{1}} \times \frac{3.25 \text{ mi }}{1 \times \text{ mi }} \times \frac{3.25 \text{ mi }}{1 \times \text{ mi }} \times \frac{3.25 \text{ mi }}{1 \times \text{ mi }} \times \frac{3.25 \text{ mi }}{1 \times \text{ mi }} \times \frac{3.25$$

C. Given a scale of 1in = 20ft, find the size of the drawing if the actual size of a kitchen is 9ft by 12ft.

Ex. 2: Find the scale factor.

A.
$$4in = 10ft$$

Scale $\rightarrow \frac{4in}{10ft} = \frac{4in}{120in} = \frac{1}{30}$

If $i = 12in$

10 ft = 120 in

B. $6cm = 1.5mm$

Scale
$$\rightarrow 6 \text{ cm} = 60 \text{ mm} = 40$$
1.5 mm
1 cm = 10 mm
6 cm = 60 mm

B. Given a scale 1in = 20ft, find the dimensions of the room based on the drawing below. \bullet length \bullet width

