8-10 SYSTEMS OF EQUATIONS BY GRAPHING

System of Equations: two (or more) equations with the same set of two (or more) variables. Ex: $y=4 x$ and $y=x+6$ - two equations with same two variables, x and y
Solutions: 1. One Solution - an ordered pair that is a solution to both equations (in other words, where the two graphs intersect)
2. Infinitely Many Solutions - two equations that produce the same line
3. No Solution - parallel lines (same slope) because they do not intersect

Solving Systems of Equations: 1. Graphing - graphing all equations and visualizing where they intersect (HINT: use straight edge \& sharp pencil)
2. Substitution - algebraically
3. Elimination - algebraically

Ex. 1: Solve and graph, then check solution algebraically. Determine whether the system has one solution, no solution, or infinitely many. * use y-intercept then slope to graph! $*$ same slope \Rightarrow parallel lines
A. $y=2 x+2$
B. $-7 x+y=-13 \Rightarrow y=7 x-13$ $x-5 y=-3 \Rightarrow y=\frac{1}{5} x+\frac{3}{5}$
C. $\frac{1}{2} x-y=2 \Rightarrow y=\frac{1}{2} x-2$ $y=\frac{1}{2} x$

Check: $(-1,0)$

$y=2 x+2$	$y=-x-1$
$0=2(-1)+2$	$0=-(-1)-1$
$0=-2+2$	$0=1-1$
$0=0$	$0=0$.

Ex. 2: Use algebra to determine whether
Ex. 3: Infinitely many solutions the point $(2,10)$ is a solution for each system of equationstitu into system of equations. both equations
A. $y=-x+12$
$x=-y+16$
No

1) $y=-x+12$

$$
10=-(2)+12
$$

$$
10=10 V
$$

2) $x=-y+16$ $2=-(10)+16$
B. $8 x-y=6$
$-6=2 x-y$
$2=6 x$
3) $8(2)-10=6$
$16-10=6$
$6=6$
$\begin{aligned} 6 & =6 \\ -6 & =2(2)-10\end{aligned}$
$-6=4-10$
$-6=-6 v$

$$
\text { same }\left\{\begin{array}{l}
y=x+1 \\
\text { line } \\
2 x-2 y=-\frac{6}{3} \Rightarrow-2 y=-2 x-2
\end{array}\right.
$$

Check:
Check:

