Newton's $2^{\text {nd }}$ Law
 Show all of your work!!

1) The net external force on the propeller of a .75 kg model airplane is 17 N forward. What is the acceleration of the airplane?
2) The net external force on a golf cart is 390 N north. If the cart has a total mass of 270 kg , what are the magnitude and direction of its acceleration?
3) A car has a mass of 1500 kg . What force is required to accelerate the car at $4.5 \mathrm{~m} / \mathrm{s}$ squared to the east?
4) A 6.0 kg object undergoes an acceleration of $2.0 \mathrm{~m} / \mathrm{s}$ squared.
a) What is the magnitude of the net external force acting on it?
b) If this same force is applied to a 4.0 kg object, what acceleration is produced?
5) A type of elevator called a cage is used to raise and lower miners in a mine shaft. Suppose the cage carries a group of miners down the shaft. If the unbalanced force on the cage is 60.0 N , and the mass of the loaded cage is 150 Kg , what is the acceleration of the cage?
6) The whale shark is the largest of all fish and can have the mass of three adult elephants. Suppose that a crane is lifting a whale shark into a tank for delivery to an aquarium. The crane must exert an unbalanced force of $25,000 \mathrm{~N}$ to lift the shark from rest. If the shark's acceleration equals 1.25 $\mathrm{m} / \mathrm{s}^{2}$, what is the shark's mass?
7) In drag racing, acceleration is more important than speed, and therefore drag racers are designed to provide high accelerations. Suppose a drag racer has a mass of 1250 Kg and accelerates at a rate of $16.5 \mathrm{~m} / \mathrm{s}^{2}$. How large is the unbalanced force acting on the racer?
8) Assume that a catcher in a professional baseball game exerts a force of -65.0 N to stop the ball. If the baseball has a mass of 0.145 Kg , what is its acceleration as it is being caught?
9) The Petronas Twin Towers in Malaysia is 452 meters tall. Suppose a tourist tosses an apple off of the very top of one of the buildings and it falls with a force of 3.6 N , and its acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what is the apple's mass?
10) If a $52,200,000 \mathrm{Kg}$ luxury cruise ship is accelerating at a rate of $-0.357 \mathrm{~m} / \mathrm{s}^{2}$ as it comes into port. How large is the unbalanced force acting on the ship to make it stop in the proper location?

Newton's Second Law of Motion

1. A little boy pushes a wagon with his dog in it. The mass of the dog and wagon together is 45 kg . The wagon accelerates at $0.85 \mathrm{~m} / \mathrm{s}^{2}$. What force is the boy pulling with?
2. A 1650 kg car accelerates at a rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. How much force is the car's engine producing?
3. A 68 kg runner exerts a force of 59 N . What is the acceleration of the runner?
4. A crate is dragged across an ice covered lake. The box accelerates at $0.08 \mathrm{~m} / \mathrm{s}^{2}$ and is pulled by a 47 N force. What is the mass of the object?
5. Three women push a stalled car. Each woman pushes with a 425 N force. What is the mass of the car if the car accelerates at $0.85 \mathrm{~m} / \mathrm{s}^{2}$?
6. A tennis ball, 0.314 kg , is accelerated at a rate of $164 \mathrm{~m} / \mathrm{s}^{2}$ when hit by a professional tennis player. What force does the player's tennis racket exert on the ball?
7. In an airplane crash a woman is holding an 8.18 kg baby. In the crash the woman experiences a horizontal deacceleration of $88.2 \mathrm{~m} / \mathrm{s}^{2}$. How much force must the woman exert to hold the baby in place?
8. When an F-14 airplane takes-off an aircraft carrier it is literally catapulted off the flight deck. The plane's final speed at take-off is $68.2 \mathrm{~m} / \mathrm{s}$. The F-14 starts from rest. The plane accelerates in 2 seconds and has a mass of $29,545 \mathrm{~kg}$. What is the total force that gets the F-14 in the air?
9. A sports car accelerates from 0 to $60 \mathrm{mph}, 27 \mathrm{~m} / \mathrm{s}$, in 6.3 seconds. The car exerts a force of 4106 N . What is the mass of the car?
10. A sled is pushed along an ice covered lake. It has some initial velocity before coming to a rest in 15 m . It took 23 seconds before the sled and rider came to a rest. If the rider and sled have a combined mass of 52.5 kg , what is the magnitude of the stopping force?
11. A car is pulled with a force of $10,000 \mathrm{~N}$. The car's mass is 1267 kg . But, the car covers 394.6 m in 15 seconds. What is the expected acceleration of the car from the $10,000 \mathrm{~N}$ force?
12. A boy can accelerate at $1.00 \mathrm{~m} / \mathrm{s}^{2}$ over a short distance. If the boy were to have an energy drink and suddenly have the ability to accelerate at $5.6 \mathrm{~m} / \mathrm{s}^{2}$, then how would his new energy drink force compare to his earlier force? If the boy's earlier force was 45 N , what is the size of his energy drink force?
13. A race car exerts $19,454 \mathrm{~N}$ while the car travels at an acceleration of $91.36 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the car?
