Newton’s Second Law of Motion

1. A little boy pushes a wagon with his dog in it. The mass of the dog and wagon together is 45 kg. The wagon accelerates at 0.85 m/s². What force is the boy pulling with?

2. A 1650 kg car accelerates at a rate of 4.0 m/s². How much force is the car’s engine producing?

3. A 68 kg runner exerts a force of 59N. What is the acceleration of the runner?

4. A crate is dragged across an ice covered lake. The box accelerates at 0.08 m/s² and is pulled by a 47 N force. What is the mass of the object?

5. Three women push a stalled car. Each woman pushes with a 425 N force. What is the mass of the car if the car accelerates at 0.85 m/s²?

6. A tennis ball, 0.314 kg, is accelerated at a rate of 164 m/s² when hit by a professional tennis player. What force does the player’s tennis racket exert on the ball?

7. In an airplane crash a woman is holding an 8.18 kg baby. In the crash the woman experiences a horizontal de-acceleration of 88.2 m/s². How much force must the woman exert to hold the baby in place?

8. When an F-14 airplane takes-off an aircraft carrier it is literally catapulted off the flight deck. The plane’s final speed at take-off is 68.2 m/s. The F-14 starts from rest. The plane accelerates in 2 seconds and has a mass of 29,545 kg. What is the total force that gets the F-14 in the air?

9. A sports car accelerates from 0 to 60 mph, 27 m/s, in 6.3 seconds. The car exerts a force of 4106 N. What is the mass of the car?

10. A sled is pushed along an ice covered lake. It has some initial velocity before coming to a rest in 15 m. It took 23 seconds before the sled and rider came to a rest. If the rider and sled have a combined mass of 52.5 kg, what is the magnitude of the stopping force?

11. A car is pulled with a force of 10,000 N. The car’s mass is 1267 kg. But, the car covers 394.6 m in 15 seconds. What is the expected acceleration of the car from the 10,000 N force?

12. A boy can accelerate at 1.00 m/s² over a short distance. If the boy were to have an energy drink and suddenly have the ability to accelerate at 5.6 m/s², then how would his new energy drink force compare to his earlier force? If the boy’s earlier force was 45N, what is the size of his energy drink force?

13. A race car exerts 19,454 N while the car travels at an acceleration of 91.36m/s². What is the mass of the car?
Newton’s Laws – Activity

Directions: Mark each of the following situations as an example of Newton’s First (1st), Second (2nd), or Third (3rd) Law. Then explain in complete sentences how the situation is an example of that particular law.

1. A magician pulls a tablecloth out from under dishes and glasses on a table without disturbing them.
 Explain Your Answer:

2. A person’s body is thrown outward as a car rounds a curve on a highway.
 Explain Your Answer:

3. Rockets are launched into space using jet propulsion where exhaust accelerates out from the rocket and the rocket accelerates in an opposite direction.
 Explain Your Answer:

4. A picture is hanging on a wall and does not move.
 Explain Your Answer:

5. A person not wearing a seatbelt flies through a car window when someone slams on the breaks because the person’s body wants to remain in continuous motion even when the car stops.
 Explain Your Answer:

6. Pushing a child on a swing is easier than pushing an adult on the same swing, because the adult has more inertia.
 Explain Your Answer:

7. A soccer ball accelerates more than a bowling ball when thrown with the same force.
 Explain Your Answer:

8. A soccer player kicks a ball with their foot and their toes are left stinging.
 Explain Your Answer:

9. A student leaves a pencil on a desk and the pencil stays in the same spot until another student picks it up.
 Explain Your Answer:

10. Two students are in a baseball game. The first student hits a ball very hard and it has a greater acceleration than the second student who bunts the ball lightly.
 Explain Your Answer: